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Abstract. The monomer is taken to be a fluid with purely repulsive interactions, which 
is treated by the Mayer theory. Some of the repulsions between pairs of monomer 
molecules are modified to become strong attractions by the assumed polymerising agent; 
and the gelation point is taken to be determined by the pressure passing through a 
maximum with increasing density. 

If the repulsions are taken to be Gaussian, detailed calculations can be made and i t  
is found that the position of the gel point is little affected by correlations between the 
pairs of molecules whose interactions are modified. 

1. Introduction 

We suppose the raw-material monomer to be an assembly of effectively spherical 
molecules and, for simplicity, we assume that they exert purely repulsive central forces 
on one another. The monomer molecules are now supposed to be modified by whatever 
agent causes the polymerisation, for example heat, irradiation or chemical treatment, 
so that the interactions between some of the pairs of molecules are changed from 
repulsive to attractive, the remaining interactions remaining repulsive. We are inter- 
ested in predicting the expected structure of the polymer, that is to say the amount 
of branching of the polymer chains and the conditions that lead to gelation. It turns 
out that they are both related fairly simply to the parameters that describe the original 
and the modified interactions. 

It is physically obvious that the structure of the polymer must depend critically 
on the number of other molecules with which a typical one is interacting, that is on 
the mean ‘valency’. If i t  is one we can only have dimers, if it is two we shall have 
linear chains. If it is more than two, we shall have branched chains and ultimately 
expect cross-linking and gelation. We shall first examine the consequences of the 
assumption that the intermolecular interactions are modified in a completely random 
fashion using some of the results of Erdos and Renyi (1960) on random graphs. It 
is also possible to work out the consequences of an opposite extreme assumption, 
namely that the modifications of the interactions are so strongly correlated that no 
monomer can attract more than two others. This constrains the polymer molecules 
to be linear, but seems to have very little effect on the gelation point. Indeed the 
predictions are largely independent both of the precise assumptions made and of the 
detailed behaviour of the virial coefficients of the monomer. 
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2. Description of the model 

We describe the monomer by means of the treatment by Mayer and Mayer (1940) 
of the classical imperfect gas. The equilibrium configuration partition function is 
obtained (to a factor) by integrating the following quantity (actually the Boltzmann 
factor for the whole assembly over all the possible positions in the vessel of all the 
N monomer molecules present. 

Integrand = n (1 +fl,). (1) 
I J  

Here f l J  is the Mayer function exp(- VIJ/kT) - 1 describing the interaction V(rlJ) 
between monomers i and j ,  and is a function of the distance rlJ and of the temperature. 
For a purely repulsive interaction f will be negative everywhere; near to -1 for r = 0 
and falling to zero in a distance of a few molecular diameters. As we are mainly 
concerned with the low-density region we are not concerned with the now well known 
fact that even a purely repulsive interaction can, at sufficiently high density, induce a 
transition resembling solidification. 

We choose for f the Gaussian function 

f I, = -  exp(-rf,/a *) (2) 

because (Uhlenbeck and Ford 1962) it is possible to calculate any assigned Mayer 
cluster integral explicitly. It is easy to modify the theory for other types of purely 
repulsive interaction. For example, for rigid spheres of diameter a we have, in place 
of (2), a function f that is -1 for r < a  and zero for r >a. 

We now suppose that, as stated above, a fraction p of the inter-monomer Boltzmann 
factors are modified in this way 

1 +f 4 f l  (3) 
where p is small and A is large. In words, for a small fraction of the pairs of molecules 
a weak repulsion is replaced by a strong attraction. Of course there is no physical 
reason why we should have the same function f on both sides of (3), but we do expect 
the ranges of the attractions and repulsions to be of the order of a few molecular 
diameters and retaining the form o f f  is very convenient mathematically. 

Assumption A 

Assumption A, whose consequences we now develop, using (2) and (3), is that the 
interactions between the (y)  pairs of molecules are modified completely at random. 
We assume further that, after the modificatians, we wait for the assembly to come 
to a new state of statistical equilibrium. Therefore, we average over all possible 
choices of bonds that are to be modified in the sense (3), each having a probability p 
of being modified. We can calculate the new partition function by replacing 1 + f  in 
(1) by (1 -p ) ( l  + f )  +PA(-f) (remember that f is negative). For the Gaussian interac- 
tion (2) the factors 1 -exp(-?/a2) in (1) are replaced by factors 

p A + p - l  exp(-r2/a2)). 
(1 - P ) (  1 + 

1 - P  
Thus, apart from the numerical factor (1 - p ) ( : )  the integrand for the modified assembly 
remains of the same form as (I), but with a different numerical coefficient for the 
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exponential. Therefore, we can still use the Mayer theory, and we now investigate 
what happens when the coefficients of the exponentials become positive, as they do 
when p becomes large enough. 

3. Consequences of assumption A 

Consider first of all the critical case p = 1/(A + 1). 
The integrand is no longer a function of the r’s and, apart from the factor (1 - p ) ( : ) ,  

the configuration partition function becomes just V N  (as for the perfect gas) because 
the effects of attractions and repulsions balance, so that every molecule can reach 
everywhere in the volume V with the same probability. This critical value of p is 
reminiscent of, but not identical with, the so-called ‘theta-point’ defined by Flory. 
This arises, for a polymer in solution or in equilibrium with its monomer, as follows. 
The possible configurations of any chain are restricted by the effect of repulsions 
between non-neighbouring segments of the chain. The effect of these can be balanced, 
to a first approximation, by a net attraction between the segments and the solvent or 
the monomer molecules. In fact, the ‘theta-temperature’ is quite analogous to the 
Boyle temperature of an imperfect gas, e.g. the van der Waals gas. There is an 
approximate balance between the effects of the short-range repulsion and the longer- 
range attraction between pairs of molecules, so that we have the real gas nearly 
obeying the perfect gas laws near the Boyle temperature. It must be stressed that, in  
this model, the balance is associated with the probability p ,  rather than with the 
temperature, since temperature cannot really be defined for a Gaussian model. We 
have only an analogy with the Boyle temperature and the Flory theta-point, nothing 
more. 

We shall show that an assembly whose effective pair Boltzmann factor is of type 
(4) can still sustain an external pressure even if the factor q =(PA + p  - 1)/1 - p  is 
positive, provided that it is not too large. How large can it be? We can answer this 
by applying the Mayer theory with an effective Mayer function q exp(-r2/a2), the 
factors (1 - p )  in (4) not affecting the pressure. We can calculate the virial series as 
in Temperley (1977) which studied the Gaussian model of the imperfect gas with f 
negative. We use the same technique of splitting the virial series into sub-series, in 
each sub-series grouping together irreducible diagrams which have the same cyclomatic 
number. This grouping has the advantage that all the sub-series have the same radius 
of convergence x = l/qb. Repeating the work of Temperley (1977) with q positive 
we find, after correcting some obvious misprints in that paper, 

- - 

with further negative terms for 8 graphs, etc. where all terms except the first are 
negative and where x = N /  V, b = (& u ) ~ ,  d = number of dimensions (for d = 2 the 
ring series contribution to dP/dx sums in closed form, but we do not need this result 
here). 

The consequences of (6) now follow very easily. For small x, the pressure is 
positive, but it goes through a maximum just below x = l/qb and quickly plunges to 
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unphysical negative values. The contributions of the higher graphs are all negative 
and each subseries diverges exactly at x = l /qb .  We conclude that the pressure 
maximum is unstable and that at any higher pressure the assembly would collapse to 
a smaller volume (theoretically zero because the cores are soft). We identify the 
corresponding critical value of p with the onset in gelation, which takes place once 
we go past the maximum of P. 

4. Some properties of a random graph 

Contrary to intuition, Erdos and Renyi (1960) have shown that a completely random 
choice of some of the (y)  lines of a complete graph on N points has asymptotically 
some very definite structural features, which appear in five different stages. To get 
long linear chains, one clearly needs an expected number of links comparable with 
N. The first two of Erdos and Renyi’s stages are as follows. Let L be the expected 
number of links in the polymer (that is bonds that have been changed to attractive 
ones.) We consider the graph formed by these links. 

( a )  L = O(N). Graphs mainly trees 
( 6 )  L = ( t -a)N.  Largest tree contains about 2 In N / a 2  points. If a becomes zero, 

a well-marked transition occurs and the largest tree now contains about N2’3 points, 
so that each point has a valency of the order of N1’3.  This is not realistic for any 
polymer. Therefore, we must keep L below iN, but only just below it, otherwise we 
shall get short polymers. Quantitatively, we must take a’ of the order In N / N  to 
make the number of vertices comparable with the number of edges, and this implies 
that A,  the ratio of attractive to repulsive Boltzmann factors, is of the order N/ln N.  
A large ratio between a chemical and a physical interaction is not unreasonable, and 
below we shall show that a dependence on N is also reasonable. 

5. Removal of assumption A 

Chemically, we would not expect more than about four linkages per monomer for 
steric reasons. So, if L is greater than N / 2 ,  we can no longer modify our bonds at 
random, but must introduce some correlation which has the effect of limiting the 
valencies of our graphs. (At present, we do not have the generating function for all 
graphs with maximum valencies of three or four.) 

We can, however, examine fairly easily the consequences of two assumptions that 
are, in a sense, the exact opposites of assumption A.  There are now strong correlations 
or anti-correlations between the various attractions that can be introduced. 

Assumption B 
The graphs corresponding to the introduction of factors like (4) have a maximum 
valency of one, that is to say are simply dimers and monomers. This means that, for 
example, no more than one of two factors like (1 +f12)  and (1 + f 2 3 )  that have a suffix 
in common can be modified. The monomer-dimer generating function can be precisely 
written down for the complete graph on N points which means that we can list all 
permissible modifications of the Mayer terms. 
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We find that the first two terms of the virial series are the same as in (6 )  but that 
no more than half of the interactions in a ring term can be modified, the others 
remaining negative. Therefore, the various possibilities will all lead to ring-type series 
smaller in numerical magnitude than the terms in (6 )  and with terms of mixed signs. 
Now for a virial series of the form (6 )  we have already found that the position of the 
gelation point is mainly determined by the first two terms, x and -$4x2b, the ring 
and higher terms having little effect apart from shifting the maximum of P. 

Assumption C 

Graphs corresponding to the introduction of attractions are of valency 2 at most. 
Again, the generating function for such graphs is precisely known, since the only such 
graphs are dimers, chains and rings, and we know in exactly how many ways a set of 
1 points can be connected up into a ring or chain. In this case, in the virial we have 
the terms x and -&x2 as in (6)  but now it is possible to have ring terms all of the 
same sign. Again the predictions are similar to those of (6) .  Therefore, whether we 
assume that the probabilities of two neighbouring Boltzmann factors such as (1 +fI2)  

and (1 + f 2 4  being modified are independent (assumption A), strongly anti-correlated 
(assumption B) or strongly correlated (assumption C), we get very similar predictions 
of the value of x for which aP/ax = 0. 

One may wonder how assumption B can produce ‘gelation’. What it really predicts 
is that, given a strong enough attraction, a typical dimer collapses to a very small 
volume if the pressure is high enough. The less artificial assumptions A and C predict 
that the collapse of a whole chain or ring takes place under about the same conditions 
as that of a dimer, which is reasonable. 

6. Discussion 

It seems artificial to have to assume that, according to assumption A, the number of 
attractive links introduced is only very slightly less than &V. The corresponding 
assumption that A,  the relative strength of the attraction is large is quite plausible, 
but it seems, at first sight, unsatisfactory in that it also has to be a function of N. This 
is probably the result of assuming no correlations at all between the introduced 
attractions. The situation is very similar to that of the Weiss ferromagnetic or the 
van der Waals gas. In these theories the consequence of assuming that the interaction 
between a pair of molecules is independent of distance is that, in order to get sensible 
physical results, we have to take its strength as proportional to 1,”. 

It is of interest that the onset of gelation, or the collapse of chains, seems to be 
very largely independent of the model. 
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